News

Latest News and Publications

Microscopy and Microanalysis 2023 Resource Guide

Our project team is presenting work at Microscopy and Microanalysis 2023 spanning areas of materials synthesis, degradation, quantum information science, autonomous experimentation, and data science. You can find all the mentioned resources and publications here:

Resources

Materials Synthesis

  • Nicholas S. Yama, I-Tung Chen, Srivatsa Chakravarthi, Bingzhao Li, Christian Pederson, Bethany E. Matthews, Steven R. Spurgeon, Daniel E. Perea, Mark G. Wirth, Peter V. Sushko, Mo Li, Kai-Mei C. Fu. “Silicon-lattice-matched boron-doped gallium phosphide: A scalable acousto-optic platform.” (2023). https://arxiv.org/abs/2305.11436

Environmental Effects

  • Taylor, S.D., Yano, K.H., Sassi, M., Matthews, B.E., Kautz, E.J., Lambeets, S.V., Neumann, S., Schreiber, D.K., Wang, L., Du, Y. and S.R. Spurgeon. “Resolving diverse oxygen transport pathways across La1−xSrxFeO3 and metal-perovskite heterostructures.” (2022). Advanced Materials Interfaces. DOI:10.1002/admi.202202276 [Download PDF]

  • Matthews, B., Sassi, M., Barr, C., Ophus, C., Kaspar, T., Jiang, W., Hattar, K., and S.R. Spurgeon. “Percolation of ion-irradiation-induced disorder in complex oxide interfaces.” Nano Letters. 21.12 (2021): 5353–5359. DOI:10.1021/acs.nanolett.1c01651 [Download PDF]

  • S.R. Spurgeon. “Order-disorder behavior at thin film oxide interfaces.” Current Opinion in Solid State & Materials Science. 24.6 (2020): 100870. DOI:10.1016/j.cossms.2020.100870 [Download PDF]

Data Science

  • Lewis, N., Jin, Y., Tang, X., Shah, V., Doty, C., Matthews, B.E., Akers, S. and S.R. Spurgeon. “Forecasting of in situ electron energy loss spectroscopy.” npj Computational Materials. 8 (2022): 252. DOI:10.1038/s41524-022-00940-2 [Download PDF]

  • Kalinin, S.V., Ziatdinov, M., Spurgeon, S.R., Ophus, C., Stach, E.A., Susi, T., Agar, J., and J. Randall. “Deep learning for electron and scanning probe microscopy: from materials design to atomic fabrication.” MRS Bulletin. 47 (2022): 931–939. DOI:10.1557/s43577-022-00413-3 [Download PDF]

  • Doty, C., Gallagher, S., Cui, W., Chen, W., Bhushan, S., Oostrom, M., Akers, S., and S.R. Spurgeon. “Design of a graphical user interface for few-shot machine learning-based classification of electron microscopy data.” Computational Materials Science. 203.15 (2022): 111121. DOI:10.1016/j.commatsci.2021.111121 [Download PDF]

  • Akers, S., Kautz, E., Trevino-Gavito, A., Olszta, M., Matthews, B., Wang, L., Du, Y., and S.R. Spurgeon. “Rapid and flexible segmentation of electron microscopy data using few-shot machine learning.“ npj Computational Materials. 7 (2021): 187. DOI:10.1038/s41524-021-00652-z [Download PDF]

Autonomous Experimentation

  • Fiedler, K.R., Olszta, M., Yano, K., Doty, C., Hopkins, D., Akers, S., and S.R. Spurgeon. “Evaluating Stage Motion for Automated Electron Microscopy.” (2023). https://arxiv.org/abs/2212.08683

  • Sergei V. Kalinin, Debangshu Mukherjee, Kevin M. Roccapriore, Ben Blaiszik, Ayana Ghosh, Maxim A. Ziatdinov, A. Al-Najjar, Christina Doty, Sarah Akers, Nageswara S. Rao, Joshua C. Agar, Steven R. Spurgeon. “Deep Learning for Automated Experimentation in Scanning Transmission Electron Microscopy.” (2023). https://arxiv.org/abs/2304.02048

  • Olszta, M., Hopkins, D., Fiedler, K.R., Oostrom, M., Akers, S., and S.R. Spurgeon. “An automated scanning transmission electron microscope guided by sparse data analytics.” Microscopy and Microanalysis. 28.5 (2022): 1611–1621. DOI:10.1017/S1431927622012065 [Download PDF]

Steven S